See also nirs.modules.default_modules.basic_processing,
nirs.modules.default_modules.FIR_model,
nirs.modules.default_modules.group_analysis,
nirs.modules.default_modules.image_recon,
nirs.modules.default_modules.single_subject_dOD, and
nirs.modules.default_modules.single_subject.
nirs.modules.default_modules.FIR_model
This module runs a default modules to get group level statistical analysis.
The following modules are included in this default: nirs.modules.RemoveStimLess, nirs.modules.FixNaNs, nirs.modules.Resample, nirs.modules.OpticalDensity, nirs.modules.TrimBaseLine, nirs.modules.AR_IRLS, and nirs.modules.MixedEffects.
Example Usage:
for i = 1:10
raw(i) = nirs.testing.simData([], @(t)nirs.testing.blockedStimDesign(t,15,25,2));
% task-based 15s duration, 25s between onset, and 2 conditions
end
job = nirs.modules.default_modules.FIR_model();
GroupStats = job.run(raw);
% a contrast window based on time
GroupStats.ttest({‘A[3:8s]’}).draw(‘tstat’,[],‘p<0.05’)
% a contrast window using a tapered shape (based on the canonical model)
GroupStats.ttest({‘A[canonical]’}).draw(‘tstat’,[],‘p<0.05’,[],[],‘hbo’);
% a contast window based on the sample point (2-8 is the 2nd through 8th
% beta term and requires knowledge of the FIR binwidth).
GroupStats.ttest({‘A[2:8]’}).draw